Устный счёт

Перейти к: навигация, поиск

У́стный счёт — математические вычисления, осуществляемые человеком без помощи дополнительных устройств (компьютер, калькулятор, счёты и т. п.) и приспособлений (ручка, карандаш, бумага и т. п.).

Процесс устного счёта

Процесс устного счёта можно рассматривать как технологию счёта, объединяющую представления и навыки человека о числах, математические алгоритмы арифметики.

Имеются три вида технологии устного счёта, которые используют различные физические возможности человека:

  • счёт «на пальцах»;
  • аудиомоторная технология счёта;
  • визуальная технология счёта.

Характерной особенностью аудиомоторного устного счёта является сопровождение каждого действия и каждого числа словесной фразой типа «дважды два — четыре». Традиционная система счёта является именно аудиомоторной технологией. Недостатками аудиомоторного способа ведения расчётов являются:

  • отсутствие в запоминаемой фразе взаимосвязей с соседними результатами,
  • невозможность выделить во фразах о таблице умножения отдельно десятки и единицы произведения без повторения всей фразы;
  • невозможность обратить фразу вспять от ответа к множителям, что важно для выполнения деления с остатком;
  • медленная скорость воспроизведения словесной фразы.

Супервычислители, демонстрируя высокие скорости мышления, используют свои визуальные способности и отличную зрительную память. Люди, которые владеют скоростными вычислениями, не используют слов в процессе решения арифметического примера в уме. Они демонстрируют реальность визуальной технологии устного счёта, лишённой главного недостатка — замедленной скорости выполнения элементарных действий с числами.

Устный счёт в начальной школе

Выработка навыков устного счёта занимает особое место в начальной школе и является одной из главных задач обучения математике на этом этапе[1]. Именно в первые годы обучения закладываются основные приёмы устных вычислений, которые активизируют мыслительную деятельность учеников, развивают у детей память, речь, способность воспринимать на слух сказанное, повышают внимание и быстроту реакции[1].

Тренажёры для устного счёта

Цифровые вертушки на телефонной матрице.

Цифровые вертушки в базовом варианте представляют собой две телефонных панели, допускающие повороты вокруг центральной оси. Цифровые вертушки являются механическими учебными пособиями, позволяющими в игровой форме изучать с детьми методы геометрического сложения и умножения однозначных десятичных чисел. Описаны в патенте РФ[2].

Конструкция цифровой вертушки. Неподвижная основа вертушки представляет собой плоскость с рисунками цифр, расставленных в формате Т-матрицы из трех строк и трех столбцов. На основу накладывается поворачивающаяся плоскость (пропеллер) на которой нарисованы стрелочки, подсказывающие ответы. Ось вращения пропеллера совпадает с центром неподвижной Т-матрицы. Единственное доступное движение — это поворот пропеллера вокруг оси[3].

Сложение.

Принцип действия цифровой вертушки заключается в следующем. Запишем сумму однозначых чисел A+B=[D;E] двумя цифрами десятков D и единиц Е. Все примеры с одинаковой величиной слагаемого +B назовём листом сложения.

Цифру единиц E примера сложения показываем стрелочкой от A к E. Эта стрелочка называется указателем единиц суммы.

Стрелочки на листе сложения образуют ломаные линии молний.

Правило единиц. Сложение A+B выполняется путём перехода по стрелочке-указателю, изображённой на листе сложения (+B), от цифры A к цифре E единиц суммы.

Пример 2+1. Потребуется лист сложения (+1). Установим фишку-метку на цифру 2 на T-матрице. Перемещаем фишку по стрелочке молнии, выходящей из точки 2. Конец указателя показывает сумму 3.

Пример 7+7. Берём лист сложения (+7). Установим фишку-метку на цифру 7 на T-матрице. Перемещаем фишку по стрелочке «шаг вверх» на 7-й молнии, выходящей из точки A=7. Конец указателя показывает цифру единиц E=4.

Применяем правило десятков. Если на указателе единиц суммы A->E есть инверсия, то есть, A>E, тогда цифра десятков суммы D=1[4].

Умножение.

Проведём следующий эксперимент с примерами умножения на 3 (третий лист умножения 3xB=[D;E]). Представим, что мы находимся в центре большой телефонной Т-матрицы. Покажем левой рукой направление из центра нв множитель B. Отставим в сторону правую руку, составив с левой рукой прямой угол. Тогда правая рука покажет цифру единиц E примера умножения 3xB[5]. Итак, правило единиц при умножении на 3 формулируется в два слова: «единицы справа» (от радиального луча множителя B).

Правило поворота лучей (чисел) на Т-матрице можно рассматривать как мнемоническое правило, удобное для запоминания всех примеров 3-го листа умножения. Если учитель попросит подсчитать 3x7, ученик вспомнит картинку Т-матрицы с нужными лучами и прочитает по ней цифры ответа, называя числа словами. Однако при геометрических вычислениях в уме слова не нужны, так как слова появляются в сознании вычислителя после картинки, где уже указаны цифры ответа. Одновременно с картинкой, возникающей в памяти человека, число результата уже получено и осознано.

Следует обратить внимание на то, что элементы изображения в наглядной арифметике стандартизованы, они могут рассматриваться как язык визуальных образов, последовательность которых (соответствующая алгоритму) эквивалентна проведению расчётов. Возникающие в памяти картинки могут быть динамическими, как в кино, или же статическими, если на одной геометрической схеме показаны и исходные данные, и числа результата. Одношаговые алгоритмы предпочтительнее многошаговых.

Чтобы вспомнить нужную картинку для получения цифр ответа элементарного примера, требуется интервал времени 0,1-0,3 секунды. Заметим, что при решении элементарных примеров геометрическим способом нет никакого увеличения нагрузки на психику. По факту, геометрический счёт у тренированного вычислителя автоматически является скоростным счётом.

Компьютер «на пальцах».

Указание радиальных лучей при умножении на 3 можно выполнить ладонью правой руки. Отставим в сторону большой палец правой руки, плотно сжав остальные пальцы. Положим правую ладонь на центр Т-матрицы, направив большой палец на множитель B. Тогда остальные пальцы правой руки покажут цифру единиц E произведения 3xB=[D;E]). Итак, умножение на 3 реализуется на телефонной матрице правилом правой руки". Например, 3x2=6[6].

Аналогично: правило единиц умножения на 7 — это правило левой руки[7].

Правило единиц умножения на 9 — это шпагат из пальцев[8].

Другие геометрические правила единиц умножения можно показать на схемах, на которых имеются радиальные лучи Т-матрицы[9]. При этом умножение чётных чисел выполняется на чётном кресте цифр Т-матрицы[10]. Удачным тренажёром являются механические учебные пособия — цифровые вертушки, использующие цифровую телефонную матрицу[11].

Чтобы показать величину десятков произведения AxB, можно воспользоваться ступенчатыми моделями листов умножения, вид и особенности которых мы запоминаем так же, как рельеф местности. Высота руки над основанием (полом) показывает величину десятков. Если цифра D превосходит 5, то основание пола будет соответствовать D=5, а верхний уровень руки — 9[12].

Феноменальные счётчики

Феномен особых способностей в устном счёте встречается с давних пор. Как известно, ими обладали многие учёные, в частности, Андре Ампер и Карл Гаусс. Однако, умение быстро считать было присуще и многим людям, чья профессия была далека от математики и науки в целом.

До второй половины XX века на эстраде были популярны выступления специалистов в устном счёте[13]. Иногда они устраивали показательные соревнования между собой, проводившиеся в том числе и в стенах уважаемых учебных заведений, включая, например, Московский государственный университет имени М. В. Ломоносова[13].

Среди известных российских «супер счётчиков»:

Среди зарубежных:

Хотя некоторые специалисты уверяли, что дело во врождённых способностях[31], другие аргументированно доказывали обратное: «дело не только и не столько в каких-то исключительных, „феноменальных“ способностях, а в знании некоторых математических законов, позволяющих быстро производить вычисления» и охотно раскрывали эти законы[13].

Истина, как обычно, оказалась на некоей «золотой середине» сочетания природных способностей и грамотного, трудолюбивого их пробуждения, взращивания и использования. Те, кто, следуя Трофиму Лысенко, уповают исключительно на волю и напористость, со всеми уже хорошо известными способами и приёмами устного счёта обычно при всех стараниях не поднимаются выше очень и очень средних достижений. Более того, настойчивые попытки «хорошенько нагрузить» мозг такими занятиями, как устный счёт, шахматы вслепую и т. п. легко могут привести к перенапряжению и заметному падению умственной работоспособности, памяти и самочувствия (а в наиболее тяжёлых случаях — и к шизофрении). С другой стороны, и одарённые люди при беспорядочном использовании своих талантов в такой области, как устный счёт, быстро «перегорают» и перестают быть в состоянии длительно и устойчиво показывать яркие достижения.

Соревнования по устному счёту

В настоящее время в прибалтийских странах и Белоруссии набирает популярность соревнование по устному счёту среди школьников под названием Пранглимине (эст. Pranglimine), проводящиеся в Миксике (Эстония)[32][33].

Начиная с 2004 года, один раз в два года проводится Мировой чемпионат по вычислениям в уме (англ.)[34], на который собираются лучшие из ныне живущих феноменальных счётчиков планеты. Соревнования проводятся по решению таких задач, как сложение десяти 10-значных чисел, умножение двух 8-значных чисел, расчёт заданной даты по календарю с 1600 по 2100 годы, корень квадратный из 6-значного числа. Также определяется победитель в категории «Лучший универсальный феноменальный счётчик» по итогам решения шести неизвестных «задач с сюрпризом».

Метод Трахтенберга

Среди практикующихся в устном счёте пользуется популярностью книга «Системы быстрого счёта» цюрихского профессора математики Якова Трахтенберга[35]. История её создания необычна[14]. В 1941 году немцы бросили будущего автора в концлагерь. Чтобы сохранить ясность ума и выжить в этих условиях, учёный стал разрабатывать систему ускоренного счёта. За четыре года ему удалось создать стройную систему для взрослых и детей, которую впоследствии он изложил в книге. После войны учёный создал и возглавил Цюрихский математический институт[14].

Устный счёт в искусстве

В России хорошо известна картина русского художника Николая Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского», написанная в 1895 году. Приведённая на доске задача, над которой размышляют ученики, требует достаточно высоких навыков устного счёта и смекалки. Вот её условие:

Феномен быстрого счёта больного аутизмом раскрывается в фильме «Человек дождя» Барри Левинсона и в фильме «Пи» Даррена Аронофски.

Некоторые приёмы устного счёта

Для умножения числа на однозначный множитель (например, 34*9) устно, необходимо выполнять действия, начиная со старшего разряда, последовательно складывая результаты (30*9=270, 4*9=36, 270+36=306)[36].

Для эффективного устного счёта полезно знать таблицу умножения до 19*9. В этом случае умножение 147*8 выполняется в уме так: 147*8=140*8+7*8= 1120 + 56= 1176[36]. Однако, не зная таблицу умножения до 19*9, на практике удобнее вычислять все подобные примеры методом приведения множителя к базовому числу: 147*8=(150-3)*8=150*8-3*8=1200-24=1176, причем 150*8=(150*2)*4=300*4=1200.

Если одно из умножаемых раскладывается на однозначные множители, действие удобно выполнять, последовательно перемножая на эти множители, например, 225*6=225*2*3=450*3=1350[36]. Также, проще может оказаться 225*6=(200+25)*6=200*6+25*6=1200+150=1350.

Несколько способов устного счета:

  • Умножение на 10. Приписать справа нуль: 48*10 = 480.
  • Умножение на 9. Для того чтобы умножить число на 9 надо к множимому приписать 0 и от получаемого числа отнять множимое, например 45*9=450-45=405.
  • Умножать на 5 удобнее так: сначала умножить на 10, а потом разделить на 2
  • Умножение на 11 двузначного числа [N; A]. Раздвинуть цифры N и A, вписать посередине сумму (N+A).

например, 43*11 = [4; (4+3); 3] = [4; 7; 3] = 473.

  • При умножении на 1,5 умножаемое нужно разделить пополам и прибавить к умножаемому, например 48*1,5= 48/2+48=72. Можно применить при умножении на 15 48*1,5*10 = 720.

Возведение числа вида [N;5] (оканчивающееся пятеркой) в квадрат производится по схеме: умножаем N на N+1, записываем в сотни, и приписываем 25 справа. Формула: [N; 5] x [N; 5] = [ (Nx(N+1)) ; 2; 5 ]. Доказательство (10N+5) x (10N+5) = (N*(N+1)) x 100 + 25. Например, 65² = 6*7 и приписываем справа 25, получим 4225 или 95² = 9025 (сотни 9*10 и приписать 25 справа).

См. также

Примечания

  1. ↑ О воздействии системы устных упражнений на успеваемость младших школьников по математике // Учитель — ученик: проблемы, поиски, находки: Сборник научных трудов. Выпуск 8
  2. [ Патент РФ № 2406160, 2009 г. Творогов В. Б. Цифровые вертушки для сложения, вычитания, умножения и целочисленного деления, использующие телефонную Т-матрицу]
  3. Конструкция из Т-матрицы и молнии.
  4. А. В. Творогов Цифровые вертушки в игровом методе обучения сложению.
  5. Иллюстрация способа умножения на 3.
  6. Иллюстрация умножения на 3.
  7. Иллюстрация умножения на 7.
  8. Иллюстрация умножения на 9.
  9. Правила единиц для таблицы умножения на телефонной матрице.
  10. Иллюстрация правила единиц для умножения.
  11. А. В. Творогов Цифровые вертушки как инструмент умножения.
  12. А. В. Творогов «Компьютер на пальцах» в игровом методе изучения таблицы умножения.
  13. ↑ ГЕНИАЛЬНОСТЬ ИЛИ МЕТОД? // А. Леонович, Наука и жизнь, N4 1979 г.
  14. ↑ Чудо-счётчики. // Виктор Пекелис, Техника — молодёжи, N7 1974 г.
  15. Чудо-счётчик // Диво-90. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1991. — С. 54. — 207 с. — 100 000 экз.
  16. Чудо-счётчик // Диво 93. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1993. — С. 29. — 191 с. — 100 000 экз. — ISBN 5-87012-008-X..
  17. Чудо-счётчик // Книга рекордов "Левша". — Москва: Издательский дом "Вся Россия", 2004. — С. 123. — 336 с. — 4000 экз.
  18. Официальный сайт Ю. Горного
  19. Человек-компьютер // Диво-90. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1991. — С. 54. — 207 с. — 100 000 экз.
  20. Человек-компьютер // Диво 93. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1993. — С. 29. — 191 с. — 100 000 экз. — ISBN 5-87012-008-X..
  21. Человек-компьютер // Диво. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1998. — С. 30. — 224 с. — 15 000 экз. — ISBN 5-87012-014-4..
  22. Человек-компьютер // Диво. Чудеса. Рекорды. Достижения. — Москва: "Диво", 2001. — С. 29. — 287 с. — 10 000 экз. — ISBN 5-87012-017-9..
  23. Человек-компьютер // Книга рекордов "Левша". — Москва: Издательский дом "Вся Россия", 2004. — С. 123. — 336 с. — 4000 экз.
  24. Человек-календарь // Диво 93. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1993. — С. 29. — 191 с. — 100 000 экз. — ISBN 5-87012-008-X..
  25. Человек-календарь // Диво. Чудеса. Рекорды. Достижения. — Москва: "Диво", 1998. — С. 30-31. — 224 с. — 15 000 экз. — ISBN 5-87012-014-4..
  26. Календарь в голове // Диво. Чудеса. Рекорды. Достижения. — Москва: "Диво", 2001. — С. 29-30. — 287 с. — 10 000 экз. — ISBN 5-87012-017-9..
  27. Календарь в голове // Диво. Чудеса. Рекорды. Достижения. — Москва: "Диво", 2005. — С. 28—29. — 208 с. — ISBN 5-87012-023-3..
  28. Человек-календарь // Книга рекордов "Левша". — Москва: Издательский дом "Вся Россия", 2004. — С. 123. — 336 с. — 4000 экз.
  29. Young cuban fourth in mental calculus olympiad. (англ.)
  30. Cuban prodigy up for another Guinness Record. (англ.)
  31. «Считаю, что тов. Гольдштейн Д. Н. — калькулятор высшей марки… Его работа основана исключительно на памяти и врождённых способностях. Очень доволен, что моё дело нашло в нём достаточно заслуженного наследника». Р. С. Арраго, Москва, 5. 11. 1929 г.
  32. PRANGLIMINE
  33. ПРАНГЛИМИНЕ экспресс-счет
  34. "Пожиратель цифр. Роберт Фонтэйн досчитался до чемпионства"  (рус.), Радио Свобода (8 декабря 2006). Проверено 29 сентября 2012.
  35. Я. Трахтенберг «Системы быстрого счёта»
  36. 1 2 3 Перельман Я. И. Быстрый счет. Тридцать простых приемов устного счета.

Литература

  • Бантова М. А. Система формирования вычислительных навыков. //Нач. шк — 1993.-№ 11.-с. 38-43.
  • Белошистая А. В. Приём формирования устных вычислительных умений в пределах 100 // Начальная школа. — 2001.- № 7
  • Берман Г. Н. Приёмы счёта, изд. 6-е, М.: Физматгиз, 1959.
  • Боротьбенко Е И. Контроль навыков устных вычислений. //Нач. шк. — 1972. — № 7.- с. 32-34.
  • Воздвиженский А. Умственные вычисления. Правила и упрощённые примеры действий с числами. — 1908.
  • Волкова СИ., Моро М. И. Сложение и вычитание многозначных чисел. //Нач. шк.- 1998.-№ 8.-с.46-50
  • Воскресенский М. П. Приёмы сокращённых вычислений : Целые числа. — М.: типо-лит. В. Рихтер, 1905.- 39 с.
  • Вроблевский. Как научится легко и быстро считать. — М.-1932.-132с.
  • Гольдштейн Д. Н. Курс упрощённых вычислений. М.: Гос. учебно-пед. изд., 1931.
  • Гольдштейн Д. Н. Техника быстрых вычислений. М.: Учпедгиз, 1948.
  • Гончар Д. Р. Устный счёт и память: загадки, приёмы развития, игры // В сб. Устный счёт и память. Донецк: Сталкер, 1997 г. ISBN 966-596-057-7.
  • Демидова Т. Е., Тонких А. П. Приёмы рациональных вычислений в начальном курсе математики // Начальная школа. — 2002. — № 2. — С. 94-103.
  • Катлер Э. Мак-Шейн Р. Система быстрого счёта по Трахтенбергу. — М.: Учпедгиз.- 1967. −150с.
  • Липатникова И. Г. Роль устных упражнений на уроках математики //Начальная школа. — 1998. — № 2.
  • Мартель Ф. Приёмы быстрого счёта. — Пб. −1913. −34с.
  • Мартынов И. И. Устный счёт для школьника, что гаммы для музыканта. // Начальная школа. — 2003. — № 10. — С. 59-61.
  • Мелентьев П. В. «Быстрые и устные вычисления.» М.: «Гостехиздат», 1930.
  • Перельман Я. И. Быстрый счёт. Л.: Союзпечать, 1945.
  • Пекелис В. Д. Твои возможности, человек!. — 4-е, перераб. и доп. — Москва: Знание, 1984. — 272 с. — 200 000 экз.
  • Робер Токэ «2 + 2 = 4» (1957) (англоязычное издание: «Магия чисел» (1960)).
  • Сорокин А. С. Техника счёта. М.: «Знание», 1976.
  • Сухорукова А. Ф. Больше внимания устным вычислениям. //Нач. шк. — 1975.-№ 10.-с. 59-62.
  • Творогов В. Б. Наглядная арифметика и технология быстрого счёта. М.: Кн.1: Основы. «Либроком», 2011. — 208 с. ISBN 978-5-397-01928-6.
  • Фаддейчева Т. И. Обучение устным вычислениям // Начальная школа. — 2003. — № 10.
  • Фаермарк Д. С. «Задача пришла с картины.» М.: «Наука».

Ссылки

  • В. Пекелис. Чудо-счётчики // Техника-молодёжи, № 7, 1974 г.
  • С. Транковский. Устный счёт // Наука и жизнь, № 7, 2006 год.
  • 1001 задача для умственного счёта С. А. Рачинского.
  • Тренажёр устного счёта.
  • Решения задачи Рачинского с картины «Устный счёт. В народной школе С. А. Рачинского».
  • Наглядная арифметика

Устный счёт.

© 2021–2023 sud-mal.ru, Россия, Барнаул, ул. Денисова 68, +7 (3852) 74-95-52